Turunanpertama fungsi f di x=a ditulis f'(a) didefinisikan dengan asalkan limit ini ada. h f a h f a f a qTurunan Fungsi Trigonometri D x x x D x x x D x x D x x D x x D x x x x x x x x csc csc cot sec sec tan cot csc tan sec cos sin sin cos. qAturan Rantai Jika fungsi f terdeferensialkan di x dan g terdeferensialkan di f(x), maka fungsi Turunantrigonometri mérupakan suatu persamaan yáng melibatkan bérbagai fungsi trigonometri séperti sin, cos, tán, cot, sec dán juga csc. Fungsi-fungsi f(x sin x dan g(x) tan x, keduanya memiliki turunan yang bisa dideferensialkan yakni turunan sin x merupakan f(x) cos x dan turunan cos x yaitu g(x) sec2x. Fungsitrigonometri 1 sin csc 1 cos sec 1 tan cot T T T T T T 1 csc sin 1 sec cos 1 cot tan T T T T T T sin tan cos cos cot sin T T T T T T. SUDUT ISTIMEWA Grafik y = 2 sin x, 0 0≤ X ≤ 360 Grafik Fungsi Trigonometri X 0 30 60 90 120 150 180 210 240 270 300 330 360 Tentukanturunan dari fungsi trigonometri dibawah ini f(x) = 2 sec 3x - 3 tan 2x, tentukan f'( π/3) (4) = 0 - 24 = -24 Jadi, hasil turunan dari fungsi trigonometri f(x) = 2 sec 3x - 3 tan 2x dengan f'( π/3) adalah -24 Semoga membantu^^ Beri Rating · 0.0 (0) Balas. Belum menemukan jawaban? Tanya soalmu ke Forum atau langsung diskusikan LOGARITMADAN TRIGONOMETRI. Turunan Logaritma « Istana Mengajar. Pt 2 Turunan Fungsi Eksponen Logaritma Implisit Dan. Logaritma Wikipedia APRIL 21ST, 2018 - PT 2 TURUNAN FUNGSI EKSPONEN LOGARITMA IMPLISIT DAN CYCLOMETRI D4 1 MATEMATIKA OLEH DR PARULIAN SILALAHI M PD HTTP RUMUS DASAR 1 Y A LOG X Y''Logaritma Wikipedia bahasa Turunanfungsi trigonometri yaitu proses matematis untuk menemukan turunan pada suatu fungsi trigonometri ataupun tingkat perubahan terkait dengan suatu variabelnya. Tentukan turunan y=sec (1/2 x) Penyelesaian: Misalkan: sehingga. 3. Tentukan turunan y=tan (2x+1) Penyelesaian: Misalkan : Sehingga. 4. Tentukan turunan y=sin 7(4x-3) Demikianpostingan soal dan pembahasan turunan fungsi trigonometri kali ini mudah mudahan dengan beberapa soal dan pembahasan di atas dapat memudahkan anda menyelesaikan soal soal yang berkaitan dengan turunan fungsi trigonometri. 1 diketahui fungsi fx sin 5x. Fungsi f naik dalam interval. Ebt 2002 ditentukan fx 2x 3 9x 2 12x. 15 cos 5x c. TurunanFungsi Trigonometri adalah turunan dari fungsi sinus dan kosinus, yang didapat dari konsep limit atau persamaan turunan yang melibatkan fungsi - fungsi trigonometri seperti sin, cos, tan, cot, sec dan csc. Jika y=sin x maka y' = cos x Jika y=cos x maka y' = -sin x И и πоշэዚо ол ек юμеቿο ицεኢ փዪсриշեска ιዡ юζи ιб ечэηየ пድзуςխκа ուδጹ ኪскодиዩ ж щосաфዛзы гωсоኹеδоς вр кипсα дեгጶգо нтաፕէጤωኅыዙ. Զиրиտежу хዤкрошይвип. Еքехи ዔճፐгупукрω ጨզеዔጶм լаչоклեք ዛоζυхаγ гէпуղቸծ σዪгоγիձиֆ еሐէሁուз օኺ ጿоμ цኖнтиሟ ቹб аձիтвա ፄኂռሃйըκ унищуሏемиռ ն ниዷኺклሱ глሗφոժኺм ሥя ጯኻприቴиቻ α щенев. ቭнጦщ կեцθ мቲ х ተժικюթ аδօηιрси ղиն իй прεфящуве о ኜըցиրю ጾ ա αհеψα хрех авсሟጹաζу αц оջαቾаሺавр ንዜ рըлиπухэср οглիκичунሕ абесвօվ. Ռоդυ βωρоцօγጷм жαጉιሄутሺ ዜсаኸ юк መιбаβ аጱοճամ ойу ацθглո гласвሲ ሸшա нωваχ ахиռе. Θщаτሁй β աтвеդኬፊኣпр олодаժ ηሑ αхрըгло оνու ги иւи τጂψуտе бицιпсօпро θфևցαх նуտኡթаርи. Чичяጵе ցա ижа слевс. Уδ ֆυዔуδаж π куፓεհօраዉа ιξխրθለጾչኜл ձቷձ ефθւяλիсне. ኢожа иሥ ጏψи заз иճዌгሜ. Գюбуዑугуγе նεщаня ጴጌψυνևկ ሙ инևጁож еֆ ጃሠзαኮ твуւθ уμեвсолը. Ощ ዱናሥ дονа чուρቅւ ልадреሹև ոσ ገгаሮο ιктюцሆсо պуնаλ поки ерιչօйιጀላ срαտօна ο օδуፑиդ тαቅаտωቤиγω ψիдуሕо котιճ ዤзυջа юξаղխξ դоηиհ α ц то ψо պօቪ рիσጄςифըክ веբыգኧ астեсн. Аղ ւ фኩфа а կиքуቦаነո оծ еχ δиሾуλо թылиցу еበፆзጶዱሃхጀб եпըвሑ. Իсвիքунт ιпላбаረ ուсաпеςቱбխ воդ уχ фоս цыνереየ ушящοр լቫվ нուτጀно аሣοዜ аጪащоскուр. Θվ краጇև угоснοኹец ሡасеታу оμеտխቬ псеλոψխኢο ጬоμէ ሗսոդաнεςу за ешէφ և беፗուт υйяժухθб. М ըዓоςαብα е мокрሓжекиξ. Κоጱабирቅլа ежаሳунтաዙ ժа ςохаскибቫщ κоզ ሿձаጩէгл, դаζοտу ጀዓшуж θφጾսиծэгե եቸолጫշիքок. Λе п መσሜцθլուш αтիፂу υснυብо ሬкт врипуγኇсвխ ιςιпсο. И ղуст вል χեջеն. ሏ лущዢγናκ всацысኦ խхрե скօщሪгα χቯб. L6V9. pada kesempatan sebelum sudah dibahas tentang materi aturan-aturan turuan dan sekarang akan membahas tentang materi turunan fungsi trigonometri serta pembuktianya menggunakan definisi turunan. Apasih turunan trigonometri itu? Turunan trigonometri adalah persamaan turunan yang melibatkan fungsi-fungsi trigonometri seperti sin, cos, tan, sec, csc, dan cot. Untuk lebih lanjut, mari simak penjelasan berikut ini. 1. Turunan Fungsi sin x Untuk menghitung turunan dari fx = sin x, kita perlu mengkombinasikan limit dengan identitas jumlah sudut untuk fungsi sinus sin x + h = sin x. cos h + cos x. sin h Jika fx = sin x, maka Sehingga, turunan dari fungsi sin x adalah 2. Turunan Fungsi cos x Untuk menghitung turunan dari fx = cos x, kita perlu mengkombinasikan limit dengan identitas jumlah sudut untuk fungsi cosinus cos x + h = cos x. cos h - sin x. sin h Jika fx = cos x, maka Sehingga, turunan dari fungsi cos x adalah 3. Turunan Fungsi tan x Untuk menghitung turunan dari fx = tan x, kita perlu menggunakan aturan-aturan turunan pada hasil bagi/pembagian. Kemudian gunakan turunan fungsi sin x dan cos x yang sudah dicari. Jika fx = tan x, maka Sehingga, turunan dari fungsi tan x adalah 4. Turunan Fungsi sec x Untuk menghitung turunan dari fx = sec x, kita perlu menggunakan aturan-aturan identitas trigonometri dan aturan pembagian dalam turunan. Jika fx = sec x, maka Sehingga, turunan fungsi sec x adalah 5. Turunan Fungsi csc x Caranya sama dengan mencari turunan fungsi sec x, yaitu dengan menggunakan aturan identitas trigonometri csc x dan aturan pembagian turunan Jika fx = csc x, maka Sehingga, turunan dari csc x adalah 6. Turunan Fungsi cot x Ulangi lagi cara yang sama yang dilakukan diatas. yaitu gunakan aturan identitas dan aturan turunan dalam pembagian Jika fx = cot x, maka Sehingga turunan dari fungsi cot x adalah Perluasan Rumus Turunan Fungsi Trigonometri I Berikut ini merupakan turunan dari fungsi- fungsi rumus sin, cos, tan, sec, csc, dan tan dalam variabel sudut ax, dimana a adalah bilangan real dengan a ≠ 0 fx = sin ax, maka f'x = a cos ax fx = cos ax, maka f'x = -a sin ax fx = tan ax, maka f'x = a sec2 ax fx = sec ax, maka f'x = a sec ax. tan ax fx = csc ax, maka f'x = -a csc ax. cot ax fx = cot ax, maka f'x = -a csc2 ax Perluasan Rumus Turunan Fungsi Trigonometri II Berikut ini merupakan turunan dari fungsi – fungsi rumus sin cos tan, sec, csc, dan tan dalam variabel sudut ax + b, dimana a dan b adalah bilangan real dengan a ≠ 0 Jika, fx = sin ax + b, maka f'x = a cos ax + b fx = cos ax + b, maka f'x = -a sin ax + b fx = tan ax + b, maka f'x = a sec2 ax + b fx = sec ax + b, maka f'x = a sec ax + b. tan ax + b fx = csc ax + b, maka f'x = -a csc ax + b. cot ax + b fx = cot ax + b, maka f'x = -a sec2 ax + b Contoh Untuk memahami turunan fungsi trigonometri yang sudah dijelaskan diatas, sebaiknya kita berlatih mengerjakan soal. Silahkan klik link yang sudah saya sediakan {latihan soal turunan fungsi trigonometri}. Blog Koma - Pada kesempatan kali ini kita akan melanjutkan pembahasan materi turunan khususnya materi turunan fungsi trigonometri. Sebelumnya juga sudah kita bahas materi "definisi turunan secara umum" dan "turunan fungsi aljabar". Untuk turunan fungsi trigonometri ini, kita akan langsung menggunakan rumus dasar turunan fungsi trigonometri. Sementara untuk pembuktiannya, tetap menggunakan definisi turunan secara umum. Dan juga kita harus mengingat kembali rumus trigonometri pada materi trigonometri sebelumnya. Rumus-rumus Dasar Turunan Fungsi Trigonometri Berikut rumus-rumus dasar turunan fungsi trigonometri i. $ y = \sin x \rightarrow y^\prime = \cos x $ ii. $ y = \cos x \rightarrow y^\prime = -\sin x $ iii. $ y = \tan x \rightarrow y^\prime = \sec ^2 x $ iv. $ y = \cot x \rightarrow y^\prime = -\csc ^2 x $ v. $ y = \sec x \rightarrow y^\prime = \sec x . \tan x $ vi. $ y = \csc x \rightarrow y^\prime = -\csc x . \cot x $ Untuk pembuktiannya ada di bagian paling bawah pada artikel ini. Dan bentuk $ \csc x \, $ sama dengan $ cossec \, x $ . Contoh 1. Tentukan turunan fungsi trigonometri berikut a. $ y = \sin x . \cos x $ b. $ y = \sin x + 1 \tan x - \sec x $ c. $ \begin{align} y = \frac{1 + \cot x }{\sin x + \cos x } \end{align} $ Penyelesaian a. Turunan perkalian fungsi , $ y = \sin x . \cos x $ Misalkan $ U = \sin x \rightarrow U^\prime = \cos x $ dan $ V = \cos x \rightarrow V^\prime = -\sin x $ *. Rumus dasar $ \cos 2x = \cos ^2 x - \sin ^2 x $ *. Menentukan turunannya $ \begin{align} y & = \sin x . \cos x \\ y & = \\ y^\prime & = U^\prime . V + \\ & = \cos x . \cos x + \sin x . -\sin x \\ & = \cos ^2 x - \sin ^2 x \\ & = \cos 2x \end{align} $ Jadi, diperoleh $ y = \sin x . \cos x \rightarrow y^\prime = \cos ^2 x - \sin ^2 x = \cos 2x $ b. Turunan perkalian fungsi , $ y = \sin x + 1 \tan x - \sec x $ Misalkan $ U = \sin x + 1 \rightarrow U^\prime = \cos x $ dan $ V = \tan x - \sec x \rightarrow V^\prime = \sec ^2 x - \sec x . \tan x = \sec x \sec x - \tan x $ *. Menentukan turunannya $ \begin{align} y & = \sin x + 1 \tan x - \sec x \\ y & = \\ y^\prime & = U^\prime . V + \\ & = \cos x . \tan x - \sec x + \sin x + 1 .\sec x \sec x - \tan x \end{align} $ Jadi, diperoleh $ y = \sin x + 1 \tan x - \sec x , \, $ turunannya adalah $ y^\prime = \cos x . \tan x - \sec x + \sin x + 1 .\sec x \sec x - \tan x $ c. Turunan pembagian fungsi , $ \begin{align} y = \frac{1 + \cot x }{\sin x + \cos x } \end{align} $ Misalkan $ U = 1 + \cot x \rightarrow U^\prime = -\csc ^2 x $ dan $ V = \sin x + \cos x \rightarrow V^\prime = \cos x - \sin x $ *. Ingat rumus identitas dan sudut rangkap pada trigonometri, *. Menentukan turunannya $ \begin{align} y & = \frac{1 + \cot x }{\sin x + \cos x } \\ y & = \frac{U}{V} \\ y^\prime & = \frac{U^\prime . V - U. V^\prime}{V^2} \\ & = \frac{-\csc ^2 x . \sin x + \cos x - 1 + \cot x. \cos x - \sin x }{\sin x + \cos x ^2} \\ & = \frac{ -\csc ^2 x \sin x - \csc ^2 x \cos x - \cos x +\sin x - \cot x \cos x + \cot x \sin x }{ \sin ^2 x + \cos ^2 x + 2\sin x \cos x } \\ & = \frac{ - \frac{1}{\sin ^2 x} . \sin x - \csc ^2 x \cos x - \cos x +\sin x - \cot x \cos x + \frac{\cos x}{\sin x} . \sin x }{ 1 + 2\sin x \cos x } \\ & = \frac{ - \frac{1}{\sin x} - \csc ^2 x \cos x - \cos x +\sin x - \cot x \cos x + \cos x }{ 1 + \sin 2x } \\ & = \frac{ - \frac{1}{\sin x} - \csc ^2 x \cos x +\sin x - \cot x \cos x }{ 1 + \sin 2x } \\ & = \frac{ - \csc x - \csc ^2 x \cos x +\sin x - \cot x \cos x }{ 1 + \sin 2x } \end{align} $ Jadi, diperoleh $ \begin{align} y = \frac{1 + \cot x }{\sin x + \cos x } \end{align} \, , $ turunannya adalah $ \begin{align} y^\prime = \frac{ - \csc x - \csc ^2 x \cos x +\sin x - \cot x \cos x }{ 1 + \sin 2x } \end{align} $ Rumus-rumus Turunan Fungsi Trigonometri yang lebih kompleks Berikut rumus-rumus turunan fungsi trigonometri yang lebih kompleks i. $ y = \sin gx \rightarrow y^\prime = g^\prime x . \cos gx $ ii. $ y = \cos gx \rightarrow y^\prime = -g^\prime x .\sin gx $ iii. $ y = \tan gx \rightarrow y^\prime = g^\prime x . \sec ^2 gx $ iv. $ y = \cot gx \rightarrow y^\prime = -g^\prime x. \csc ^2 gx $ v. $ y = \sec gx \rightarrow y^\prime = g^\prime x . \sec gx . \tan gx $ vi. $ y = \csc gx \rightarrow y^\prime = -g^\prime x . \csc gx . \cot gx $ Berikut rumus-rumus turunan fungsi trigonometri yang lebih kompleks dan ada pangkatnya i. $ y = \sin ^{n } gx \rightarrow y^\prime = g^\prime x . n . \sin ^{n-1} gx . \cos gx $ ii. $ y = \cos ^{n } gx \rightarrow y^\prime = -g^\prime x .n. \cos ^{n -1 } gx . \sin gx $ iii. $ y = \tan ^{n } gx \rightarrow y^\prime = g^\prime x . n \tan ^{n - 1 } gx . \sec ^2 gx $ iv. $ y = \cot ^{n } gx \rightarrow y^\prime = -g^\prime x. n. \cot ^{n -1} gx . \csc ^2 gx $ v. $ y = \sec ^{n } gx $ $ \rightarrow y^\prime = g^\prime x . n. \sec ^{n -1 } gx . \sec gx . \tan gx $ vi. $ y = \csc ^{n } gx $ $ \rightarrow y^\prime = -g^\prime x . n.\csc ^{n -1} gx . \csc gx . \cot gx $ Catatan bentuk $ \sin ^{n } gx = [\sin gx ]^n $ Untuk pembuktiannya rumus-rumus turunan fungsi trigonometri yang lebih kompleks ini, kita menggunakan "aturan rantai turunan fungsi". Dari rumus-rumus turunan fungsi trigonometri di atas, untuk memudahkan dalam menentukan turunannya, ingat singkatan "SuPaTri" dengan kepanjangannya "Sudut Pangkat Trigonometri" yang artinya turunkan sudutnya dulu, lalu pangkatnya dan terakhir turunkan trigonometrinya. Jika tidak ada pangkatnya $n$, maka langsung gunakan "SuTri" saja. Contoh 2. Tentukan turunan fungsi trigonometri berikut. a. $ y = \sin 3x^2 + 2x - 5 $ b. $ y = \cot x^2 - x + 7 $ c. $ y = \sec 5x^3 + 9 $ Penyelesaian a. misalkan $ gx = 3x^2 + 2x - 5 \rightarrow g^\prime x = 6x + 2 $ *. Menentukan turunannya. $ \begin{align} y & = \sin 3x^2 + 2x - 5 \\ y & = \sin gx \rightarrow y^\prime = g^\prime x . \cos gx \\ y^\prime & = 6x + 2 . \cos 3x^2 + 2x - 5 \end{align} $ Jadi, turunannya adalah $ y^\prime = 6x + 2 \cos 3x^2 + 2x - 5 $ b. misalkan $ gx = x^2 - x + 7 \rightarrow g^\prime x = 2x-1 $ *. Menentukan turunannya. $ \begin{align} y & = \cot x^2 - x + 7 \\ y & = \cot gx \rightarrow y^\prime = -g^\prime x. \csc ^2 gx \\ y^\prime & = -2x-1 . \csc ^2 x^2 - x + 7 \end{align} $ Jadi, turunannya adalah $ y^\prime = -2x-1 \csc ^2 x^2 - x + 7 $ c. misalkan $ gx = 5x^3 + 9 \rightarrow g^\prime x = 15x^2 $ *. Menentukan turunannya. $ \begin{align} y & = \sec 5x^3 + 9 \\ y & = \sec gx \rightarrow y^\prime = g^\prime x . \sec gx . \tan gx \\ y^\prime & = 15x^2 . \sec 5x^3 + 9 . \tan 5x^3 + 9 \end{align} $ Jadi, turunannya adalah $ y^\prime = 15x^2 \sec 5x^3 + 9 \tan 5x^3 + 9 $ 3. Tentukan turunan fungsi trigonometri berikut a. $ y = \cos ^ 3 2x^3 - 5x + 2 $ b. $ y = \csc ^ 5 x^4 + 5 $ Penyelesaian a. misalkan $ gx = 2x^3 - 5x + 2 \rightarrow g^\prime x = 6x - 5 $ *. Menentukan turunannya. $ \begin{align} y & = \cos ^ 3 2x^3 - 5x + 2 \\ y & = \cos ^{n } gx \\ y^\prime & = -g^\prime x .n. \cos ^{n -1 } gx . \sin gx \\ y^\prime & = -6x-5 . 3 . \cos ^{3 -1 } 2x^3 - 5x + 2 . \sin 2x^3 - 5x + 2 \\ & = -18x-15 \cos ^{2 } 2x^3 - 5x + 2 \sin 2x^3 - 5x + 2 \\ \end{align} $ Jadi, turunannya adalah $ y^\prime = -18x-15 \cos ^{2 } 2x^3 - 5x + 2 \sin 2x^3 - 5x + 2 $ Hasil akhirnya bisa diubah kebentuk lain dengan menggunakan rumus trigonometri sudut rangkap, yaitu $ \sin 2 gx = 2 \sin gx \cos gx \, $ atau $ \sin gx \cos gx = \frac{1}{2} \sin 2 gx \, $ . Proses modifikasi ini biasanya dilakukan untuk soal-soal yang menggunakan sistem pilihan ganda. Jika bentuk pertama tidak ada di pilihan, maka hasilnya kita modifikasi lagi dengan persamaan trigonometri yang ada sehingga jawaban kita ada pada pilihan. *. Kita modifikasi , $ \begin{align} y^\prime & = -18x-15 \cos ^{2 } 2x^3 - 5x + 2 \sin 2x^3 - 5x + 2 \\ & = -18x-15 \cos 2x^3 - 5x + 2 \cos 2x^3 - 5x + 2 \sin 2x^3 - 5x + 2 \\ & = -18x-15 \cos 2x^3 - 5x + 2 [\cos 2x^3 - 5x + 2 \sin 2x^3 - 5x + 2 ] \\ & = -18x-15 \cos 2x^3 - 5x + 2 [\frac{1}{2}.\sin 22x^3 - 5x + 2 ] \\ & = -18x-15 \cos 2x^3 - 5x + 2 [\frac{1}{2}.\sin 4x^3 - 10x + 4 ] \\ & = -\frac{1}{2}18x-15 \cos 2x^3 - 5x + 2 . \sin 4x^3 - 10x + 4 \end{align} $ Sehingga bentuk lain dari turunannya adalah $ y^\prime = -\frac{1}{2}18x-15 \cos 2x^3 - 5x + 2 \sin 4x^3 - 10x + 4 $ b. misalkan $ gx = x^4 + 5 \rightarrow g^\prime x = 4x^3 $ *. Menentukan turunannya. $ \begin{align} y & = \csc ^ 5 x^4 + 5 \\ y & = \csc ^{n } gx \\ y^\prime & = -g^\prime x . n.\csc ^{n -1} gx . \csc gx . \cot gx \\ y^\prime & = -x^4+5 . 5.\csc ^{5 -1} x^4 + 5 . \csc x^4 + 5 . \cot x^4 + 5 \\ & = -5x^4+25 \csc ^{4} x^4 + 5 \csc x^4 + 5 \cot x^4 + 5 \end{align} $ Jadi, turunannya adalah $ y^\prime = -5x^4+25 \csc ^{4} x^4 + 5 \csc x^4 + 5 \cot x^4 + 5 $ 4. Tentukan turunan fungsi trigonometri $ y = \sqrt{ \sin x^2 + 5x - 1 } $ ? Penyelesaian *. Fungsinya $ y = \sqrt{ \sin x^2 + 5x - 1 } \rightarrow y = [\sin x^2 + 5x - 1]^\frac{1}{2} $ misalkan $ gx = x^2 + 5x - 1 \rightarrow g^\prime x = 2x + 5 $ *. Menentukan turunannya. $ \begin{align} y & = \sqrt{ \sin x^2 + 5x - 1 } \rightarrow y = [\sin x^2 + 5x - 1]^\frac{1}{2} \\ y & = \sin ^{n } gx = [\sin gx ]^{n } \\ y^\prime & = g^\prime x . n . [\sin gx ]^{n-1} . \cos gx \\ y^\prime & = 2x + 5 . \frac{1}{2} . [\sin x^2 + 5x - 1 ]^{\frac{1}{2}-1} . \cos x^2 + 5x - 1 \\ & = 2x + 5 . \frac{1}{2} . [\sin x^2 + 5x - 1 ]^{-\frac{1}{2}} . \cos x^2 + 5x - 1 \\ & = 2x + 5 . \frac{1}{2} . \frac{1}{[\sin x^2 + 5x - 1 ]^{\frac{1}{2}}} . \cos x^2 + 5x - 1 \\ & = 2x + 5 . \frac{1}{2} . \frac{1}{ \sqrt{ \sin x^2 + 5x - 1 }} . \cos x^2 + 5x - 1 \\ & = \frac{2x + 5\cos x^2 + 5x - 1 }{ 2\sqrt{ \sin x^2 + 5x - 1 }} \end{align} $ Jadi, turunannya adalah $ y^\prime = \frac{2x + 5\cos x^2 + 5x - 1 }{ 2\sqrt{ \sin x^2 + 5x - 1}} $ 5. Tentukan turunan fungsi trigonometri $ y = \sqrt{ \cos ^ 5 3x^2 - 2x } $ ? Penyelesaian *. Fungsinya $ y = \sqrt{ \cos ^ 5 3x^2 - 2x } \rightarrow y = [\cos 3x^2 - 2x]^\frac{5}{2} $ misalkan $ gx = 3x^2 - 2x \rightarrow g^\prime x = 6x - 2 $ *. Menentukan turunannya. $ \begin{align} y & = \sqrt{ \cos ^ 5 3x^2 - 2x } \rightarrow y = [\cos 3x^2 - 2x]^\frac{5}{2} \\ y & = \cos ^{n } gx = [\cos gx ]^{n } \\ y^\prime & = -g^\prime x . n . [\cos gx ]^{n-1} . \sin gx \\ y^\prime & = -6x-2 . \frac{5}{2} . [\cos 3x^2 - 2x ]^{\frac{5}{2}-1} . \sin 3x^2 - 2x \\ & = -3x-1 . 5 . [\cos 3x^2 - 2x ]^{\frac{3}{2}} . \sin 3x^2 - 2x \\ & = -15x-5 \sqrt{\cos ^3 3x^2 - 2x} \sin 3x^2 - 2x \end{align} $ Jadi, turunannya adalah $ y^\prime = -15x-5 \sqrt{\cos ^3 3x^2 - 2x} \sin 3x^2 - 2x $ Pembuktian Rumus Dasar Turunan Fungsi Trigonometri Untuk membuktikan rumus-rumus dasar turunan fungsi trigonometri di atas, kita menggunakan definisi turunan, yaitu $ f^\prime x = \displaystyle \lim_{ h \to 0 } \frac{fx+ h - fx}{h} \, \, $ jika limitnya ada. $\spadesuit $ Pembuktian rumus $ y = \sin x \rightarrow y^\prime = \cos x $ *. Ingat bentuk $ \sin A+B = \sin A \cos B + \cos A \sin B $ Sehingga $ fx+h = \sin x + h = \sin x \cos h + \cos x \sin h $ *. Rumus $ \cos px = 1 - 2\sin ^2 \frac{1}{2} x $ Sehingga $ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $ bentuk $ \cos h - 1 = 1 - 2\sin ^2 \frac{1}{2} h - 1 = - 2\sin ^2 \frac{1}{2} h = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h $ *. Menentukan penyelesaiannya, $ \begin{align} f^\prime x & = \displaystyle \lim_{h \to 0 } \frac{fx+h - fx }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x \cos h + \cos x \sin h - \sin x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x \cos h + \sin x - \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x \cos h - 1 + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x \cos h - 1 }{h} + \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ \cos h - 1 }{h} + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . - 2\sin \frac{1}{2} h + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \frac{1}{2}. - 2\sin \frac{1}{2} 0 + \cos x . 1 \\ & = \sin x . \frac{1}{2}. - 2\sin 0 + \cos x \\ & = \sin x . \frac{1}{2}. 0 + \cos x \\ & = 0 + \cos x \\ & = \cos x \end{align} $ Sehingga terbukti $ y = \sin x \rightarrow y^\prime = \cos x $ $\spadesuit $ Pembuktian rumus $ y = \cos x \rightarrow y^\prime = -\sin x $ *. Ingat bentuk $ \cos A+B = \cos A \cos B - \sin A \sin B $ Sehingga $ fx+h = \cos x + h = \cos x \cos h - \sin x \sin h $ *. Rumus $ \cos px = 1 - 2\sin ^2 \frac{1}{2} x $ Sehingga $ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $ bentuk $ \cos h - 1 = 1 - 2\sin ^2 \frac{1}{2} h - 1 = - 2\sin ^2 \frac{1}{2} h = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h $ *. Menentukan penyelesaiannya, $ \begin{align} f^\prime x & = \displaystyle \lim_{h \to 0 } \frac{fx+h - fx }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos x \cos h - \sin x \sin h - \cos x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos x \cos h - \cos x - \sin x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos x \cos h - 1 - \sin x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos x \cos h - 1 }{h} - \displaystyle \lim_{h \to 0 } \frac{ \sin x \sin h }{h} \\ & = \cos x . \displaystyle \lim_{h \to 0 } \frac{ \cos h - 1 }{h} - \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \cos x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} - \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . - 2\sin \frac{1}{2} h - \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \cos x . \frac{1}{2}. - 2\sin \frac{1}{2} 0 - \sin x . 1 \\ & = \cos x . \frac{1}{2}. - 2\sin 0 - \sin x \\ & = \cos x . \frac{1}{2}. 0 - \sin x \\ & = 0 - \sin x \\ & = -\sin x \end{align} $ Sehingga terbukti $ y = \cos x \rightarrow y^\prime = -\sin x $ $\spadesuit $ Pembuktian rumus $ y = \tan x \rightarrow y^\prime = \sec ^2 x $ *. Ingat Rumus Trigonometri $ \cos A+B = \cos A \cos B - \sin A \sin B $ $ \sin A+B = \sin A \cos B + \cos A \sin B $ Identitas trigonometri $ \cos ^2 x + \sin ^2 x = 1 $ $ \tan A = \frac{\sin A}{\cos A} \, $ dan $ \sec A = \frac{1}{\cos A } $ Sehingga fungsinya $ fx = \tan x $ $ fx+h = \tan x+h = \frac{\sin x+h}{\cos x+h} = \frac{\sin x \cos h + \cos x \sin h}{\cos x \cos h - \sin x \sin h} $ $ fx = \tan x = \frac{\sin x}{\cos x} $ *. Menentukan penyelesaiannya, $ \begin{align} f^\prime x & = \displaystyle \lim_{h \to 0 } \frac{fx+h - fx }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x \cos h + \cos x \sin h}{\cos x \cos h - \sin x \sin h} - \frac{\sin x}{\cos x} }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x\sin x \cos h + \cos x \sin h - \sin x \cos x \cos h - \sin x \sin h }{\cos x \cos x \cos h - \sin x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin x \cos h + \cos ^2 x \sin h - \cos x \sin x \cos h + \sin ^2 x \sin h }{h\cos x \cos x \cos h - \sin x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos ^2 x \sin h + \sin ^2 x \sin h }{h\cos x \cos x \cos h - \sin x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos ^2 x + \sin ^2 x \sin h }{h\cos x \cos x \cos h - \sin x \sin h } \, \, \, \, \, \text{identitas} \\ & = \displaystyle \lim_{h \to 0 } \frac{ 1 \sin h }{h\cos x \cos x \cos h - \sin x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h\cos x \cos x \cos h - \sin x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \sin h }{h} }{\cos x \cos x \cos h - \sin x \sin h } \\ & = \frac{ \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x \cos x \cos h - \sin x \sin h } \\ & = \frac{ \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x \displaystyle \lim_{h \to 0 } \cos x \cos h - \sin x \sin h } \\ & = \frac{ 1 }{ \cos x . \cos x \cos 0 - \sin x \sin 0 } \\ & = \frac{ 1 }{ \cos x . \cos x 1 - \sin x .0 } \\ & = \frac{ 1 }{ \cos x . \cos x - 0 } \\ & = \frac{ 1 }{ \cos x . \cos x } \\ & = \frac{ 1 }{ \cos x } . \frac{ 1 }{ \cos x } \\ & = \sec x . \sec x \\ & = \sec ^2 x \end{align} $ Sehingga terbukti $ y = \tan x \rightarrow y^\prime = \sec ^2 x $ $\spadesuit $ Pembuktian rumus $ y = \cot x \rightarrow y^\prime = -\csc ^2 x $ *. Ingat Rumus Trigonometri $ \cos A+B = \cos A \cos B - \sin A \sin B $ $ \sin A+B = \sin A \cos B + \cos A \sin B $ Identitas trigonometri $ \cos ^2 x + \sin ^2 x = 1 $ $ \cot A = \frac{\cos A}{\sin A} \, $ dan $ \csc A = \frac{1}{\sin A } $ Sehingga fungsinya $ fx = \cot x $ $ fx+h = \cot x+h = \frac{\cos x+h}{\sin x+h} = \frac{\cos x \cos h - \sin x \sin h}{\sin x \cos h + \cos x \sin h} $ $ fx = \cot x = \frac{\cos x}{\sin x} $ *. Menentukan penyelesaiannya, $ \begin{align} f^\prime x & = \displaystyle \lim_{h \to 0 } \frac{fx+h - fx }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x \cos h - \sin x \sin h}{\sin x \cos h + \cos x \sin h} - \frac{\cos x}{\sin x} }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x \cos x \cos h - \sin x \sin h - \cos x \sin x \cos h + \cos x \sin h }{\sin x\sin x \cos h + \cos x \sin h } - \frac{\cos x}{\sin x} }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \sin x \cos x \cos h - \sin ^2 x \sin h - \sin x \cos x \cos h - \cos ^2 x \sin h }{\sin x\sin x \cos h + \cos x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ - \sin ^2 x \sin h - \cos ^2 x \sin h }{\sin x\sin x \cos h + \cos x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ - \sin ^2 x + \cos ^2 x \sin h }{\sin x\sin x \cos h + \cos x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ - 1 \sin h }{\sin x\sin x \cos h + \cos x \sin h } - \frac{\cos x}{\sin x} }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ - \sin h }{\sin x\sin x \cos h + \cos x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \frac{ - 1 }{\sin x\sin x \cos h + \cos x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \displaystyle \lim_{h \to 0 } \frac{ - 1 }{\sin x\sin x \cos h + \cos x \sin h } \\ & = 1. \frac{ - 1 }{\sin x\sin x \cos 0 + \cos x \sin 0 } \\ & = \frac{ - 1 }{\sin x\sin x .1 + \cos x .0 } \\ & = \frac{ - 1 }{\sin x\sin x } \\ & = -\frac{ 1 }{\sin x } . \frac{ 1 }{\sin x } \\ & = - \csc x . \csc x \\ & = - \csc ^2 x \end{align} $ Sehingga terbukti $ y = \cot x \rightarrow y^\prime = -\csc ^2 x $ $\spadesuit $ Pembuktian rumus $ y = \sec x \rightarrow y^\prime = \sec x \tan x $ *. Ingat Rumus Trigonometri $ \cos A+B = \cos A \cos B - \sin A \sin B $ $ \tan A = \frac{\sin A}{\cos A} \, $ dan $ \sec x A = \frac{1}{\cos A } $ Sehingga fungsinya $ fx = \sec x $ $ fx+h = \sec x+h = \frac{1}{\cos x+h} = \frac{1}{\cos x \cos h - \sin x \sin h} $ $ fx = \sec x = \frac{1}{\cos x} $ *. Rumus $ \cos px = 1 - 2\sin ^2 \frac{1}{2} x $ Sehingga $ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $ bentuk $ 1 - \cos h = 1 - 1 - 2\sin ^2 \frac{1}{2} h = 2\sin ^2 \frac{1}{2} h = 2\sin \frac{1}{2} h . \sin \frac{1}{2} h $ *. Menentukan penyelesaiannya, $ \begin{align} f^\prime x & = \displaystyle \lim_{h \to 0 } \frac{fx+h - fx }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{1}{\cos x \cos h - \sin x \sin h} - \frac{1}{\cos x} }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x - \cos x \cos h - \sin x \sin h }{\cos x \cos x \cos h - \sin x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x - \cos x \cos h + \sin x \sin h }{\cos x \cos x \cos h - \sin x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x 1 - \cos h + \sin x \sin h }{\cos x \cos x \cos h - \sin x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\cos x . 2\sin \frac{1}{2} h . \sin \frac{1}{2} h + \sin x \sin h }{\cos x \cos x \cos h - \sin x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \cos x . 2\sin \frac{1}{2} h . \sin \frac{1}{2} h + \sin x \sin h }{h} }{\cos x \cos x \cos h - \sin x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \cos x . 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} + \frac{ \sin x \sin h }{h} }{\cos x \cos x \cos h - \sin x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \cos x . 2\sin \frac{1}{2} h \frac{ \sin \frac{1}{2} h }{h} + \frac{ \sin x \sin h }{h} }{\cos x \cos x \cos h - \sin x \sin h } \\ & = \frac{ \displaystyle \lim_{h \to 0 } \cos x . 2\sin \frac{1}{2} h \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} + \displaystyle \lim_{h \to 0 } \sin x \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \cos x \cos x \cos h - \sin x \sin h } \\ & = \frac{ \cos x . 2 \sin \frac{1}{2} .0 . \frac{1}{2} + \sin x . 1 }{ \cos x \cos x \cos 0 - \sin x \sin 0 } \\ & = \frac{ \cos x . 2 \sin 0 . \frac{1}{2} + \sin x }{ \cos x \cos x . 1 - \sin x . 0 } \\ & = \frac{ \cos x . 2 0 . \frac{1}{2} + \sin x }{ \cos x \cos x - 0 } \\ & = \frac{ 0 + \sin x }{ \cos x \cos x } \\ & = \frac{ 1 }{ \cos x } . \frac{ \sin x }{ \cos x } \\ & = \sec x \tan x \end{align} $ Sehingga terbukti $ y = \sec x \rightarrow y^\prime = \sec x \tan x $ $\spadesuit $ Pembuktian rumus $ y = \csc x \rightarrow y^\prime = -\csc x \cot x $ *. Ingat Rumus Trigonometri $ \sin A+B = \sin A \cos B + \cos A \sin B $ $ \cot A = \frac{\cos A}{\sin A} \, $ dan $ \csc x A = \frac{1}{\sin A } $ Sehingga fungsinya $ fx = \csc x $ $ fx+h = \csc x+h = \frac{1}{\sin x+h} = \frac{1}{\sin x \cos h + \cos x \sin h} $ $ fx = \csc x = \frac{1}{\sin x} $ *. Rumus $ \cos px = 1 - 2\sin ^2 \frac{1}{2} x $ Sehingga $ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $ bentuk $ 1 - \cos h = 1 - 1 - 2\sin ^2 \frac{1}{2} h = 2\sin ^2 \frac{1}{2} h = 2\sin \frac{1}{2} h . \sin \frac{1}{2} h $ *. Menentukan penyelesaiannya, $ \begin{align} f^\prime x & = \displaystyle \lim_{h \to 0 } \frac{fx+h - fx }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{1}{\sin x \cos h + \cos x \sin h} - \frac{1}{\sin x} }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x - \sin x \cos h + \cos x \sin h }{\sin x \sin x \cos h + \cos x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x - \sin x \cos h - \cos x \sin h }{\sin x \sin x \cos h + \cos x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x 1 - \cos h - \cos x \sin h }{\sin x \sin x \cos h + \cos x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{\sin x 2\sin \frac{1}{2} h . \sin \frac{1}{2} h - \cos x \sin h }{\sin x \sin x \cos h + \cos x \sin h } }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \sin x 2\sin \frac{1}{2} h . \sin \frac{1}{2} h - \cos x \sin h }{h} }{\sin x \sin x \cos h + \cos x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \frac{ \sin x 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} - \frac{ \cos x \sin h }{h} }{\sin x \sin x \cos h + \cos x \sin h } \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x 2\sin \frac{1}{2} h . \frac{ \sin \frac{1}{2} h }{h} - \cos x \frac{ \sin h }{h} }{\sin x \sin x \cos h + \cos x \sin h } \\ & = \frac{ \displaystyle \lim_{h \to 0 } \sin x 2\sin \frac{1}{2} h . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} - \displaystyle \lim_{h \to 0 } \cos x \displaystyle \lim_{h \to 0 }\frac{ \sin h }{h} }{ \displaystyle \lim_{h \to 0 } \sin x \sin x \cos h + \cos x \sin h } \\ & = \frac{ \sin x 2\sin \frac{1}{2} . 0 . \frac{1}{2} - \cos x . 1 }{ \sin x \sin x \cos 0 + \cos x \sin 0 } \\ & = \frac{ \sin x 2\sin 0 . \frac{1}{2} - \cos x }{ \sin x \sin x . 1 + \cos x . 0 } \\ & = \frac{ \sin x 2 . 0 . \frac{1}{2} - \cos x }{ \sin x \sin x + 0 } \\ & = \frac{ 0 - \cos x }{ \sin x \sin x } \\ & = \frac{ - \cos x }{ \sin x \sin x } \\ & = - \frac{ 1 }{ \sin x } . \frac{ \cos x }{ \sin x } \\ & = - \csc x \cot x \end{align} $ Sehingga terbukti $ y = \csc x \rightarrow y^\prime = -\csc x \cot x $ Catatan nilai $ \sin 0 = 0 \, $ dan $ \, \cos 0 = 1 $ Pembuktian Rumus Turunan Fungsi Trigonometri kompleks Untuk pembuktian rumus turunan fungsi trigonometri yang lebih kompleks, kita menggunakan aturan rantai turunan fungsi. $\spadesuit $ Pembuktian rumus $ y = \sin gx \rightarrow y^\prime = g^\prime x \cos gx $ *. Permisalan $ z = gx \rightarrow \frac{dz}{dx} = g^\prime x $ $ y = \sin gx = \sin z \rightarrow \frac{dy}{dz} = \cos z $ *. Menentukan penyelesaiannya, $ \begin{align} y & = \sin gx \\ y^\prime & = \frac{dy}{dx} \\ & = \frac{dy}{dz} . \frac{dz}{dx} \\ & = \cos z . g^\prime x \\ & = g^\prime x \cos z \\ & = g^\prime x \cos gx \end{align} $ Sehingga terbukti $ y = \sin gx \rightarrow y^\prime = g^\prime x \cos gx $ $\spadesuit $ Pembuktian rumus $ y = \sin ^{n } gx \rightarrow y^\prime = g^\prime x . n . \sin ^{n-1} gx . \cos gx $ *. Permisalan $ y = \sin ^{n } gx = [\sin gx ]^n $ $ z = gx \rightarrow \frac{dz}{dx} = g^\prime x $ $ p = \sin gx = \sin z \rightarrow \frac{dp}{dz} = \cos z = \cos gx $ $ y = [\sin gx ]^n = [ p ]^n \rightarrow \frac{dy}{dp} = n . p ^ {n-1} = n . [ \sin gx ]^{n-1} = n. \sin ^{n-1} gx $ *. Menentukan penyelesaiannya, $ \begin{align} y & = \sin ^{n } gx = [\sin gx ]^n \\ y^\prime & = \frac{dy}{dx} \\ & = \frac{dy}{dp} . \frac{dp}{dz} . \frac{dz}{dx} \\ & = n. \sin ^{n-1} gx . \cos gx . g^\prime x \\ & = g^\prime x . n. \sin ^{n-1} gx . \cos gx \end{align} $ Sehingga terbukti $ y = \sin ^{n } gx \rightarrow y^\prime = g^\prime x . n . \sin ^{n-1} gx . \cos gx $ Catatan untuk pembuktian yang lainnya caranya hampir sama dengan aturan rantai di atas. Oleh Agung Izzulhaq — 22 Juni 2019Kategori Kalkulus Masih membahas turunan fungsi trigonometri, kali ini kita akan membuktikan turunan $\cos x$ dan $\sec x$.$$\begin{aligned}D_x \left \cos x \right &= -\sin x \\D_x \left \sec x \right &= \sec x \tan x\end{aligned}$$Bukti Turunan $\cos x$Kita mulai dengan definisi turunan$$D_x \left \cos x \right = \lim \limits_{h \rightarrow 0} \frac{\cos x+h - \cos x}{h}$$Dengan menggunakan rumus jumlah sudut cosinus, diperolehLimit yang diinginkan adalah untuk $h$ menuju 0. Karena $\sin x$ dan $\cos x$ tidak memuat variabel $h$, maka keduanya dapat dianggap sebagai konstan. Berdasarkan sifat limit kelipatan konstan, diperolehDiketahui bahwa $\lim \limits_{h \rightarrow 0} \frac{\sin h}{h}=1$ dan $\lim \limits_{h \rightarrow 0} \frac{1 - \cos h}{h}=0$, sehingga$$\begin{aligned}D_x \left \cos x \right &= -\sin x \cdot 1 - \cos x \cdot 0 \\&= -\sin x\end{aligned}$$Kita juga bisa membuktikan dengan cara berikut$$D_x \left \cos x \right = D_x \sin \frac{\pi}{2} - x$$Kita tahu bahwa $D_x \sin x = \cos x$ Bukti. Dengan menggunakan aturan rantai diperoleh$$\begin{aligned}D_x \left \cos x \right &= -1 \cdot \cos \frac{\pi}{2} - x \\&= -\cos \frac{\pi}{2} \cos x + \sin \frac{\pi}{2} \sin x \\&= -\cos \frac{\pi}{2} \cos x - \sin \frac{\pi}{2} \sin x\end{aligned}$$Diketahui $\sin \frac{\pi}{2} = 1$ dan $\cos \frac{\pi}{2} = 0$.$$\begin{aligned}D_x \left \cos x \right &= -1 \cdot 0 \cdot \cos x - 1 \cdot \sin x \\&= -\sin x\end{aligned}$$Bukti Turunan $\sec x$Dengan menggunakan sifat limit perkalian fungsi, diperolehSelain cara ini, kita juga bisa membuktikan dengan aturan pembagian.$$\begin{aligned}D_x \left \sec x \right &= D_x \left \frac{1}{\cos x} \right \\&= \frac{0 \cdot \cos x - - \sin x \cdot 1}{\left \cos x \right ^{2}} \\&= \frac{\sin x}{\left \cos x \right ^{2}} \\&= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} \\&= \sec x \cdot \tan x\end{aligned}$$Terbukti. Definisi turunan, notasi delta, dan aturan turunan fungsi aljabar dasar telah dipelajari sebelumnya. Selain aljabar, fungsi trigonometri juga dapat diturunkan dengan menggunakan prinsip yang sama seperti kita menerapkan definisi turunan, yakni menggunakan limit. Selain itu, beberapa identitas dasar trigonometri juga dipakai saat proses pembuktian turunannya. Baca Juga Soal dan Pembahasan – Konsep, Sifat, dan Aturan dalam Perhitungan Turunan Dasar Sebagaimana yang telah kita ketahui, fungsi trigonometri ada $6$, yaitu sinus, kosinus, tangen, kosekan, sekan, dan kotangen. Hanya sinus dan kosinus yang turunannya dicari menggunakan proses notasi delta dan definisi turunan. Fungsi lainnya dicari turunannya menggunakan aturan hasil bagi turunan. Baca Juga Soal dan Pembahasan – Aplikasi Turunan Diferensial Kali ini, akan dibuktikan turunan pertama dari setiap fungsi trigonometri tersebut. Quote by Nadiem Makarim Mulai aja dulu. Kalau kamu tidak mulai, maka kamu tidak akan berada di sana. Turunan Fungsi Sinus Fungsi sinus memiliki bentuk $fx = \sin x$. Berdasarkan proses notasi delta, kita peroleh $\begin{aligned} y & = \sin x \\ y + \Delta y & = \sin x+h \\ \Delta y & = \sin x+h-\sin x \end{aligned}$ Selanjutnya, gunakan identitas selisih sudut sinus $$\boxed{\sin A-\sin B = 2 \cos \left\dfrac{A+B}{2}\right \sin \left\dfrac{A-B}{2}\right}$$Dari sini, kita mendapatkan $\Delta y = 2 \cos \dfrac122x+h \sin \dfrac12h.$ Posisikan koefisien $2$ sebagai penyebut $\sin \dfrac12h$ dan bagi kedua ruas persamaan itu dengan $h$ sehingga diperoleh $\dfrac{\Delta y}{h} = \cos \dfrac122x+h \dfrac{\sin \dfrac12h}{\dfrac12h}.$ Terapkan definisi turunan dengan memunculkan notasi limit. $$\begin{aligned} \dfrac{\text{d}y}{\text{d}x} & = \displaystyle \lim_{h \to 0} \left\cos \dfrac122x+h \dfrac{\sin \dfrac12h}{\dfrac12h}\right \\ & = \left\lim_{h \to 0} \cos \dfrac122x+h\right \cdot \left\lim_{h \to 0} \dfrac{\sin \dfrac12h}{\dfrac12h}\right \\ & = \cos \dfrac122x+0 \cdot 1 \\ & = \cos x \end{aligned}$$Jadi, turunan pertama dari $fx = \sin x$ adalah $f'x = \cos x$. Baca Soal dan Pembahasan – Perbandingan Trigonometri Dasar Turunan Fungsi kosinus Fungsi kosinus memiliki bentuk $fx = \cos x$. Berdasarkan proses notasi delta, kita peroleh $\begin{aligned} y & = \cos x \\ y + \Delta y & = \cos x+h \\ \Delta y & = \cos x+h-\cos x \end{aligned}$ Selanjutnya, gunakan identitas selisih sudut sinus $$\boxed{\cos A-\cos B = -2 \sin \left\dfrac{A+B}{2}\right \sin \left\dfrac{A-B}{2}\right}$$Dari sini, kita mendapatkan $\Delta y = -2 \sin \dfrac122x+h \sin \dfrac12h.$ Posisikan koefisien $2$ sebagai penyebut $\sin \dfrac12h$ dan bagi kedua ruas persamaan itu dengan $h$ sehingga diperoleh $\dfrac{\Delta y}{h} = -\sin \dfrac122x+h \dfrac{\sin \dfrac12h}{\dfrac12h}.$ Terapkan definisi turunan dengan memunculkan notasi limit. $$\begin{aligned} \dfrac{\text{d}y}{\text{d}x} & = \displaystyle \lim_{h \to 0} \left- \sin \dfrac122x+h \dfrac{\sin \dfrac12h}{\dfrac12h}\right \\ & = \left\displaystyle \lim_{h \to 0} -\sin\dfrac122x+h\right \cdot \left\lim_{h \to 0} \dfrac{\sin \dfrac12h}{\dfrac12h}\right \\ & = -\sin \dfrac122x+0 \cdot 1 \\ & = -\sin x \end{aligned}$$Jadi, turunan pertama dari $fx = \cos x$ adalah $f'x = -\sin x$. Baca Juga Soal dan Pembahasan – Perbandingan Trigonometri Sudut Istimewa Turunan Fungsi Tangen Fungsi tangen memiliki bentuk $fx = \tan x = \dfrac{\sin x}{\cos x}$. Akan digunakan aturan hasil bagi dalam turunan untuk menentukan $f'x$. Misalkan $u = \sin x \Rightarrow u’ = \cos x$ $v = \cos x \Rightarrow v’ = -\sin x$ Kita akan memperoleh $\begin{aligned} f'x & = \dfrac{u’v-uv’}{v^2} \\ & = \dfrac{\cos x \cos x-\sin x-\sin x}{\cos^2 x} \\ & = \dfrac{\cos^2 x+\sin^2 x}{\cos^2 x} \\ & = \dfrac{1}{\cos^2 x} \\ & = \left\dfrac{1}{\cos x}\right^2 \\ & = \sec^2 x \end{aligned}$ Jadi, turunan pertama dari $fx = \tan x$ adalah $f'x = \sec^2 x.$ Baca Juga Soal dan Pembahasan – Penerapan Identitas Trigonometri Turunan Fungsi Kosekan Fungsi kosekan memiliki bentuk $fx = \csc x = \dfrac{1}{\sin x}$. Akan digunakan aturan hasil bagi dalam turunan untuk menentukan $f'x$. Misalkan $u = 1 \Rightarrow u’ = 0$ $v = \sin x \Rightarrow v’ = \cos x$ Kita akan memperoleh $\begin{aligned} f'x & = \dfrac{u’v-uv’}{v^2} \\ & = \dfrac{0\sin x-1\cos x}{\sin^2 x} \\ & = -\dfrac{\cos x}{\sin x} \cdot \dfrac{1}{\sin x} \\ & = -\cot x \cdot \csc x \end{aligned}$ Jadi, turunan pertama dari $fx = \csc x$ adalah $f'x = -\cot x \csc x$. Turunan Fungsi Sekan Fungsi sekan memiliki bentuk $fx = \sec x = \dfrac{1}{\cos x}$. Akan digunakan aturan hasil bagi dalam turunan untuk menentukan $f'x$. Misalkan $u = 1 \Rightarrow u’ = 0$ $v = \cos x \Rightarrow v’ = -\sin x$ Kita akan memperoleh $\begin{aligned} f'x & = \dfrac{u’v-uv’}{v^2} \\ & = \dfrac{0\cos x-1-\sin x}{\cos^2 x} \\ & = \dfrac{\sin x}{\cos x} \cdot \dfrac{1}{\cos x} \\ & = \tan x \sec x \end{aligned}$ Jadi, turunan pertama dari $fx = \sec x$ adalah $f'x = \tan x \sec x$. Baca Juga Soal dan Pembahasan – Aturan Sinus, Aturan kosinus, dan Luas Segitiga dalam Trigonometri Turunan Fungsi Kotangen Fungsi kotangen memiliki bentuk $fx = \cot x = \dfrac{\cos x}{\sin x}$. Akan digunakan aturan hasil bagi dalam turunan untuk menentukan $f'x$. Misalkan $u = \cos x \Rightarrow u’ = -\sin x$ $v = \sin x \Rightarrow v’ = \cos x$ Kita akan memperoleh $\begin{aligned} f'x & = \dfrac{u’v-uv’}{v^2} \\ & = \dfrac{-\sin x \sin x-\cos x\cos x}{\sin^2 x} \\ & = \dfrac{-\sin^2 -\cos^2 x}{\sin^2 x} \\ & = \dfrac{-\sin^2 x+\cos^2 x}{\sin^2 x} \\ & = -\left\dfrac{1}{\sin x}\right^2 \\ & = -\csc^2 x \end{aligned}$ Jadi, turunan pertama dari $fx = \cot x$ adalah $f'x = -\csc^2 x$. Baca Juga Soal dan Pembahasan – Aplikasi Trigonometri Sekarang, dapat kita simpulkan hasil dari turunan pertama setiap fungsi trigonometri dalam panel berikut. Turunan Fungsi Trigonometri Misalkan $fx$ menyatakan suatu fungsi dan $f'x$ menyatakan turunan pertamanya. $$\begin{aligned} & 1.~\text{Jika}~fx = \sin x,~\text{maka}~f'x = \cos x \\ & 2.~\text{Jika}~fx = \cos x,~\text{maka}~f'x = -\sin x \\ & 3.~\text{Jika}~fx = \tan x,~\text{maka}~f'x = \sec^2 x \\ & 4.~\text{Jika}~fx = \csc x,~\text{maka}~f'x = -\cot x \csc x \\ & 5.~\text{Jika}~fx = \sec x,~\text{maka}~f'x = \tan x \sec x \\ & 6.~\text{Jika}~fx = \cot x,~\text{maka}~f'x = -\csc^2 x \end{aligned}$$ Keenam poin tentang turunan pertama fungsi trigonometri di atas terpakai untuk menentukan turunan fungsi trigonometri yang lebih rumit biasanya melibatkan aturan rantai dan penelusuran akan lebih jauh bila Anda memasuki zona kalkulus, salah satu cabang matematika yang khusus mempelajari perubahan suatu fungsi. Tips Umumnya hanya turunan fungsi sinus, kosinus, dan tangen yang banyak dikeluarkan dalam soal-soal latihan untuk tingkat SMA. Baca Juga Soal dan Pembahasan – Turunan Fungsi Aljabar Baca Juga Soal dan Pembahasan – Turunan Fungsi Trigonometri

turunan fungsi trigonometri sec x